Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Comput Chem ; 44(10): 1016-1030, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2274450

ABSTRACT

Efficacy and safety are among the most desirable characteristics of an ideal drug. The tremendous increase in computing power and the entry of artificial intelligence into the field of computational drug design are accelerating the process of identifying, developing, and optimizing potential drugs. Here, we present novel approach to design new molecules with desired properties. We combined various neural networks and linear regression algorithms to build models for cytotoxicity and anti-HIV activity based on Continual Molecular Interior analysis (CoMIn) and Cinderella's Shoe (CiS) derived molecular descriptors. After validating the reliability of the models, a genetic algorithm was coupled with the Des-Pot Grid algorithm to generate new molecules from a predefined pool of molecular fragments and predict their bioactivity and cytotoxicity. This combination led to the proposal of 16 hit molecules with high anti-HIV activity and low cytotoxicity. The anti-SARS-CoV-2 activity of the hits was predicted.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , Reproducibility of Results , Quantitative Structure-Activity Relationship , Algorithms , Molecular Docking Simulation
2.
PeerJ ; 10: e13374, 2022.
Article in English | MEDLINE | ID: covidwho-1954766

ABSTRACT

Exploring potent herbal medicine candidates is a promising strategy for combating a pandemic in the present global health crisis. In Ayurveda (a traditional medicine system in India), Withania somnifera (WS) is one of the most important herbs and it has been used for millennia as Rasayana (a type of juice) for its wide-ranging health benefits. WS phytocompounds display a broad spectrum of biological activities (such as antioxidant, anticancer and antimicrobial) modulate detoxifying enzymes, and enhance immunity. Inspired by the numerous biological actions of WS phytocompounds, the present investigation explored the potential of the WS phytocompounds against the SARS-CoV-2 main protease (3CLpro). We selected 11 specific withanolide compounds, such as withaphysalin, withasomniferol, and withafastuosin, through manual literature curation against 3CLpro. A molecular similarity analysis showed their similarity with compounds that have an established inhibitory activity against the SARS-CoV-2. In silico molecular docking and molecular dynamics simulations elucidated withasomniferol C (WS11) as a potential candidate against SARS-CoV-2 3CLpro. Additionally, the present work also presents a new method of validating docking poses using the AlteQ method.

3.
Mol Divers ; 26(5): 2631-2645, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1616203

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). Its main protease, 3C-like protease (3CLpro), is an attractive target for drug design, due to its importance in virus replication. The analysis of the radial distribution function of 159 3CLpro structures reveals a high similarity index. A study of the catalytic pocket of 3CLpro with bound inhibitors reveals that the influence of the inhibitors is local, perturbing dominantly only residues in the active pocket. A machine learning based model with high predictive ability against SARS-CoV-2 3CLpro is designed and validated. The model is used to perform a drug-repurposing study, with the main aim to identify existing drugs with the highest 3CLpro inhibition power. Among antiviral agents, lopinavir, idoxuridine, paritaprevir, and favipiravir showed the highest inhibition potential. Enzyme - ligand interactions as a key ingredient for successful drug design.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus 3C Proteases , Drug Repositioning , Humans , Idoxuridine , Ligands , Lopinavir , Molecular Docking Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology
4.
Future Med Chem ; 13(4): 363-378, 2021 02.
Article in English | MEDLINE | ID: covidwho-1389653

ABSTRACT

Background: The SARS-CoV-2 3CLpro is one of the primary targets for designing new and repurposing known drugs. Methodology: A virtual screening of molecules from the Natural Product Atlas was performed, followed by molecular dynamics simulations of the most potent inhibitor bound to two conformations of the protease and into two binding sites. Conclusion: Eight molecules with appropriate ADMET properties are suggested as potential inhibitors. The greatest benefit of this study is the demonstration that these ligands can bind in the catalytic site but also to the groove between domains II and III, where they interact with a series of residues which have an important role in the dimerization and the maturation process of the enzyme.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , SARS-CoV-2/drug effects , Binding Sites , COVID-19/prevention & control , Computational Biology , Drug Design , Drug Repositioning , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleosides/pharmacology , Peptide Hydrolases/chemistry , Protease Inhibitors/chemistry , Protein Binding , Protein Multimerization , Software , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 Drug Treatment
5.
J Biomol Struct Dyn ; : 1-14, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1238092

ABSTRACT

The SARS-CoV-2 3CL protease (3CLpro) shows a high similarity with 3CL proteases of other beta-coronaviruses, such as SARS and MERS. It is the main enzyme involved in generating various non-structural proteins that are important for viral replication and is one of the most important proteins responsible for SARS-CoV-2 virulence. In this study, we have conducted an ensemble docking of molecules from the DrugBank database using both the crystallographic structure of the SARS-CoV-2 3CLpro, as well as five conformations obtained after performing a cluster analysis of a 300 ns molecular dynamics (MD) simulation. This procedure elucidated the inappropriateness of the active site for non-covalent inhibitors, but it has also shown that there exists an additional, more favorable, allosteric binding site, which could be a better target for non-covalent inhibitors, as it could prevent dimerization and activation of SARS-CoV-2 3CLpro. Two such examples are radotinib and nilotinib, tyrosine kinase inhibitors already in use for treatment of leukemia and which binding to the newly found allosteric binding site was also confirmed using MD simulations. Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL